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Abstract 

Background Social network analysis of animal societies allows scientists to test hypotheses about social evolution, 
behaviour, and dynamic processes. However, the accuracy of estimated metrics depends on data characteristics 
like sample proportion, sample size, and frequency. A protocol is needed to assess for bias and robustness of social 
network metrics estimated for the animal populations especially when a limited number of individuals are monitored.

Methods We used GPS telemetry datasets of five ungulate species to combine known social network approaches 
with novel ones into a comprehensive five‑step protocol. To quantify the bias and uncertainty in the network metrics 
obtained from a partial population, we presented novel statistical methods which are particularly suited for auto‑
correlated data, such as telemetry relocations. The protocol was validated using a sixth species, the fallow deer, 
with a known population size where ∼ 85% of the individuals have been directly monitored.

Results Through the protocol, we demonstrated how pre‑network data permutations allow researchers to assess 
non‑random aspects of interactions within a population. The protocol assesses bias in global network metrics, obtains 
confidence intervals, and quantifies uncertainty of global and node‑level network metrics based on the number 
of nodes in the network. We found that global network metrics like density remained robust even with a lowered 
sample size, while local network metrics like eigenvector centrality were unreliable for four of the species. The fal‑
low deer network showed low uncertainty and bias even at lower sampling proportions, indicating the importance 
of a thoroughly sampled population while demonstrating the accuracy of our evaluation methods for smaller 
samples.

Conclusions The protocol allows researchers to analyse GPS‑based radio‑telemetry or other data to determine 
the reliability of social network metrics. The estimates enable the statistical comparison of networks under different 
conditions, such as analysing daily and seasonal changes in the density of a network. The methods can also guide 
methodological decisions in animal social network research, such as sampling design and allow more accurate 
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ecological inferences from the available data. The R package aniSNA enables researchers to implement this workflow 
on their dataset, generating reliable inferences and guiding methodological decisions.

Keywords Bootstrapping, Correlation, GPS‑based radiotelemetry, Network metrics, Permutations, Social network 
analysis, Sub‑sampling, Uncertainty

Introduction
Social network analysis (SNA) has proven to be a valu-
able toolkit for biologists to understand diverse interac-
tions among animal populations and their effect on the 
environment [19, 43, 48, 52, 75]. SNA also helps in under-
standing how environmental factors influence the struc-
ture of animal populations [1, 42, 49, 51] and informs 
how minor changes at the individual level propagate 
changes in the overall behaviour of the population [4, 31, 
53, 66], which in turn contributes to informing epidemio-
logical models, implementing customized measures for 
disease control, designing wildlife conservation policies, 
and resource allocation [24, 68, 69, 82, 83]. The term SNA 
is used to refer to the analysis of network data in the con-
text of social interactions, for which there is an expand-
ing set of statistical models and inferential procedures 
(see [65] for an introduction). Under this definition, the 
observed interactions between individuals are taken as 
fact and the goal is to summarise the data and make vari-
ous inferences from it about the structure of the popu-
lation of individuals and perhaps also of the behaviour 
of each individual. In SNA for animals, nodes typically 
depict individual animals within a population, and edges 
represent the relationships or interactions between them. 
Nodes can also represent diverse entities like groups, or 
locations, depending on the research objective. Mean-
while, edges can denote various relationships between 
nodes, including social interactions (such as grooming or 
aggression), spatial or temporal associations (like prox-
imity or co-occurrence), or communication links (such 
as vocalizations or chemical cues) (see [30] for more 
details). In this paper, we present a structured step-by-
step protocol to assess the reliability and robustness of 
the more commonly reported network metrics, as calcu-
lated from interactions data constructed from observa-
tions of individuals.

One of the fundamental requirements for perform-
ing SNA on animals is that a substantial proportion of 
individuals in the population be uniquely identified and 
observed for a sufficient period [30]. Global Positioning 
System (GPS) based telemetry technology have led to a 
significant boost in animal tracking and enabled wildlife 
ecologists to monitor and map minute details of animal 
movements, including those of highly cryptic species [12, 
18, 56, 73, 79]. However, deploying GPS devices can be 
expensive both in terms of device cost [33] (from a few 

hundred to several thousand dollars each), and the costs 
related to captures, an operation that is manpower-hun-
gry. The challenges include geographical constraints of 
some or all individuals in the population where capture 
methods do not work, personality traits of individuals as 
some individuals are capture-shy, and ethical and other 
issues raised by some stakeholders [6, 50]. Therefore, 
researchers are able to gather high-resolution and fre-
quency data, albeit usually on a small subset of the entire 
population.

Inference for a large population from a limited sample 
of individuals has significant limitation, especially while 
analysing social networks [37, 41]. This is a concern as 
the relations among the members obtained from a sam-
ple of GPS-tracked individuals under-represent their 
complete set of relationships [19]. Furthermore, missing 
individuals from the sample may strongly influence the 
sampled individuals’ social measures [20]. Thus, rela-
tional data could be expected to respond more unreli-
ably to sampling from a population than other data types 
[67]. The relational nature of network data also causes it 
to violate the assumptions of independence that underlie 
most parametric statistical tests [30] and creates an addi-
tional challenge in using a sample of individuals to make 
inferences about the population.

It is therefore crucial that researchers evaluating social 
networks constructed from satellite telemetry data have 
the proper tools and a structured protocol to assess the 
robustness of their data subject to data rarefaction and 
randomization, as both the collected data and analyti-
cal methods are prone to biases inflicted by specifics of 
sampling protocols [37, 71] or the species under study 
[75]. The frequency of telemetry sampling affects the 
accuracy of social network metrics as much as the per-
centage of the population sampled [37]. Networks con-
structed using a subset of a population are termed as 
partial networks [67]. The effect of using partial networks 
on the properties of individual metrics in animal social 
network analysis has been an active area of investigation 
[5, 19, 21, 22, 60, 67, 70, 71]. Previous research has pri-
marily focused on the impact of missing nodes on social 
network structure, implying that node-level network 
metrics like degree and strength are relatively resilient 
to missing individuals [22], whereas global network sta-
tistics derived from partial data are biased estimators 
of overall network topology [7]. It nevertheless remains 
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questionable how partial data affect the accuracy of infer-
ence obtained from the resultant networks, and how well 
the point estimates obtained from sampling represent 
the ecological processes occurring in a population. At 
this stage, standard methods for estimating the extent to 
which a partial network accurately depicts the underlying 
social structure [29], as well as the related level of uncer-
tainty [8], must be developed.

Some preliminary work has been conducted to deter-
mine scaling methods; predict true network statistics 
from a partial knowledge of nodes, links, or weights of a 
network; and eventually validate the results on simulated 
networks and social media reply networks [7, 37]. A sim-
ulation study has further highlighted the importance of 
understanding consequences of missing random nodes 
from a complete animal social network [67]. Specifically, 
the networks have been simulated following a typical 
fluid fission fusion social system to determine the preci-
sion and accuracy of measures of individual social posi-
tions based on incomplete knowledge. On the contrary of 
what was expected, one of the findings of [67] revealed 
that in social networks based on fluid social interactions, 
precise inferences about individual social position can be 
derived even when not all individuals in a population are 
identifiable. A three part series [70–72] has examined the 
effect of random and non-random missing data on meas-
urement bias and concluded that the bias varies consider-
ably across scenarios, with the degree of bias being highly 
dependent on the metric of interest, the structure of the 
network being analysed, and the type of missing data. 
[72] also examined various imputation approaches for 
partial data and whether one should be used depending 
on the settings and network measurements. Despite the 
relevance of such discoveries and advancements in this 
field, social network analysis is being used in a limited 
way to study animal societies. Simulated data can be very 
useful for understanding the impact of missing data on 
the accuracy of inference obtained from partial networks. 
However, it has its limitations, as it may not fully reflect 
the nuances of empirical data or the practical challenges 
that ecologists face when dealing with incomplete obser-
vations from animals. Therefore, there is a need to under-
stand the level of uncertainty [40] and associated bias in 
empirical data and also the extent to which the current 
methods adopted to estimate partial networks from sam-
pled populations truly capture the underlying structure 
of animal social networks [30, 67, 76].

Our paper aims to present methods (both novel and 
already introduced by previous research) structured in 
a step-by-step protocol that can assess the adequacy(i.e., 
based on estimated bias and uncertainty) of the avail-
able data sample to perform social network analysis and 
obtain a measure of accuracy for global and node-level 

network metrics [30]. We demonstrate this by using data 
from free ranging animals, with their unique nuances, as 
an example. Our approach is particularly suited (but not 
limited) to telemetry relocations considering their auto-
correlated structure [11], but we foresee that this can be 
used for observational data as well. For this, we present a 
five-step workflow applied to GPS telemetry observations 
of multiple species of ungulates with differing ecology 
and living in heterogeneous ecosystems. 

1. The first step is to determine if the network structure 
obtained from the available sample of GPS observa-
tions captures any non-random aspects of the asso-
ciation in terms of the network metrics of interest. 
For this, we generate null networks by permuting a 
pre-network data stream. If a specific network met-
ric does not meet this requirement, it should be dis-
carded by researchers in their specific study case.

2. The second step is to assess how bias in the retained 
network summary statistics of interest varies with a 
decrease in the proportion of individuals sampled. 
Sub-sampling from the observed network helps esti-
mate the extent of uncertainty in the network sum-
mary statistics and provides an idea of the robustness 
of the available sample.

3. The third step is to explore how different the net-
work properties would have been if the researchers 
had tagged a completely different set of individuals 
from the population. This is achieved by applying a 
bootstrapping technique on the subsamples of the 
observed network. We also assess uncertainty by 
obtaining confidence intervals around the values of 
observed global network statistics, which is also criti-
cal when it comes to comparing networks (e.g., daily 
or seasonal changes in sociality, or between two pop-
ulations of the same species).

4. The fourth step is to check how the node-level net-
work metrics are affected by the proportion of indi-
viduals present in the sample. We use correlation and 
regression analyses to assess the robustness of node-
level characteristics.

5. The final step in the workflow employs another boot-
strapping approach to generate confidence intervals 
for each node’s individual network metric value, 
therefore generating node (individual) - level esti-
mates (along with their uncertainty) supporting 
researchers to combine social connectivity of indi-
viduals (e.g., strength of their interactions with other 
individuals in the population) with other ecological 
parameters of interest (e.g., survival, mating strategy 
and success, habitat selection, and movement behav-
iour, to name a few).
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Note that the last two steps examine the performance 
of node-level metrics and are not dependent on the first 
three steps and therefore, can be used at any point during 
the analysis. Using this step-by-step approach on a col-
lection of observed GPS telemetry data assists in obtain-
ing reliable statistical inference and provides improved 
conclusions from social network-based research for the 
use in ecological studies. We conclude our paper by out-
lining the methods described above and provide a step-
wise protocol for ecologists on the application of these 
with their datasets. We also discuss some key considera-
tions that should be made in both the construction and 
analysis of animal social networks [19, 47, 54, 80]. We 
have recently published a companion R software pack-
age aniSNA [45], which serves as a ready-made toolkit 
to apply the methods described in this paper in their ani-
mal social network studies. The package is built around 
the workflow described above and includes simple-to-
implement functions which can be used directly with 
the observed set of GPS telemetry observations [46]. The 
package aniSNA performs the workflow with any choice 
of global or node-level network metric.

Methods
Data
We collated high-frequency GPS telemetry relocations’ 
datasets from five species of ungulates, including cari-
bou (Rangifer tarandus), elk (Cervus canadensis), mule 
deer (Odocoileus hemionus), pronghorn (Antilocapra 
americana), and roe deer (Capreolus capreolus) belong-
ing to four different geographical regions (Table 1). These 
datasets have been used and published in previous pub-
lications and we refer to them for details on animal cap-
tures, monitoring, and project goals (caribou: [78], elk: 
[16], mule deer: [58], pronghorn: [63], roe deer: [55]). 
These large datasets consisted of observations from an 
unknown proportion of individuals sampled from the 
population and contain a unique animal identity number, 
date, time, and spatial coordinates of the observations. 
Note that the reason for including multiple ungulate 

species with varying sampling designs, species ecology, 
monitoring periods and relocation rates was to illustrate 
that despite these differences, our protocol was able to 
capture robustness and bias of both global and node-level 
social network metrics, suggesting its applicability to a 
broader range of target species and ecological applica-
tions. To further demonstrate the validity of our work-
flow, we included a sixth dataset (presented in Analysis of 
fallow deer population in Phoenix Park), which is obser-
vational data collected from the Phoenix Park fallow deer 
(Dama dama) population in Dublin, Ireland [39]. Unlike 
the five datasets introduced earlier, the vast majority 
( ∼ 85% ) of the population residing in Phoenix Park was 
observed and therefore allowed us to verify the validity of 
our approach in a special case where both the actual pop-
ulation size and the portion of it monitored by research-
ers was known.

In the following section we described how we com-
puted individual association and the related network, fol-
lowed by a detailed description of our five-step protocol.

Identifying associations and network construction
We obtained network structure from the raw data stream 
by identifying associations between each pair. We consid-
ered a pair of individuals in the sample to be associating if 
the two animals were observed within s metres from each 
other and within a time frame of t minutes. The value of 
spatial threshold s can be chosen by applying a statisti-
cal approach to the observed data. He et  al. [41] suggest 
one such approach could be to use the first mode from 
the distribution of inter-individual distances as it likely 
represents socially associating individuals. The temporal 
threshold t is dictated by the fix rates in telemetry data. 
For example, GPS collars on animals send signals consist-
ing of spatial coordinates after a predetermined time inter-
val. These signals can be received a few seconds (up to a 
few minutes) before or after the expected time. Therefore, 
temporal thresholds should be chosen in such a way that 
it accounts for this flexibility. See Sensitivity analysis for 
temporal threshold for sensitivity analysis on the choice 

Table 1 Summary of the data available for five species of ungulates monitored using satellite telemetry in North America and Europe

Species name Area of observation Centroid (Lat, Lon) Number 
of animals 
observed

Total 
number of 
observations

Duration of observation Fix rate

Caribou Saskatchewan, Canada (57.14489, − 104.3752) 94 (F:94, M:0) 304,607 03/2014 to 03/2018 Every 5 h

Elk Rocky mountains, Alberta, 
Canada

(49.52496, − 114.3014) 171 (F:111,M:60) 856,241 01/2007 to 03/2013 Every 2 h

Mule Deer Red Desert, Wyoming, US (42.24222, − 109.2664) 263 (F:256, M:7) 1,458,043 03/2014 to 06/2021 Every 1–2 h

Pronghorn Red Desert, Wyoming, US (41.60466, − 107.9531 ) 159 (F:159, M:0) 896,401 11/2013 to 10/2016 Every 2 h

Roe Deer Aurignac, France (43.28552, 0.8809104) 147 (F:81,M:66) 419,165 01/2005 to 12/2012 Every 10 min 

https://CRAN.R-project.org/package=aniSNA
https://CRAN.R-project.org/package=aniSNA
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of temporal threshold. Researchers should generally pick 
a threshold based on their device accuracy, species ecol-
ogy, and research question. To get a more accurate set of 
interactions, the approach introduced by [84] for generat-
ing interaction networks can be implemented as Step 0 of 
our protocol. The method relies on continuous-time move-
ment models [13] that enable researchers to recover under-
lying interactions that could not be observed directly.

We calculated an association index through a modi-
fied version of Simple Ratio Index [30] for GPS telemetry 
observations. He et  al. [41] argue that for GPS data, an 
observation of individual A without individual B is only 
informative if B is observed elsewhere simultaneously. 
Therefore, the denominator of the original formula should 
only include observations where GPS data are simultane-
ously available for both individuals. The modified index 
used in the analysis is as follows:

where xAB− No. of times when A and B are observed 
associating, yAB−No. of times A and B are observed 
within the temporal threshold but not associating.

The value of the index can range between 0 and 1, 
where 0 would indicate that the two animals were never 
observed together and 1 that they were always observed 
together. The individuals sampled from the population 
form the network nodes, and an association between 
pairs accounts for the edges in the networks. Each edge 

Index =

xAB

xAB + yAB

in the network has a weight attribute that reflects the 
association strength calculated by the modified Simple 
Ratio Index described above. In this way, we obtained the 
network structures corresponding to each species from 
their raw GPS observations, which represented the com-
plete set of relationships among the individuals tagged 
for each species. For the five-step workflow, research-
ers have the flexibility to create custom indices tailored 
to their specific research objectives for calculating the 
association between pairs of animals. These indices can 
be adjusted to account for both the distance between the 
animals during each observation and the duration of each 
contact [15, 30].

Analysis
To assess the properties of the networks, we used stand-
ard metrics common in animal social network analysis 
(Table  2). The local network summary statistics which 
provided individual-level information included degree 
[66], strength [61], betweenness centrality [4, 44], eigen-
vector centrality [4, 52] and local clustering coefficient 
[61, 66]. Edge density [59], transitivity, and diameter are 
the global network metrics and provide a summary of 
the overall network and behaviour of the individuals as a 
whole. We also calculated the mean of each node’s degree 
(mean degree [66]) and strength (mean strength) [76] 
and used those as global network properties.

Table 2 Network metrics used in the analyses

Metric Type What does the metric measure ?

Degree Node‑level The number of connections an individual has in the network. Higher degree means more gregariousness

Strength (weighted degree) Node‑level The combined weight (i.e., frequency or duration) of all of an individual’s connections in a network. It indi‑
cates the level of social connectivity based on the intensity of interactions among individuals

Betweenness centrality Node‑level The number of times an individual occurs on the shortest path between two other individuals in the net‑
work. Betweenness indicates the importance of an individual to act as a bridge, quantifying its influence 
over the flow of information or interactions between other individuals in the network

Eigenvector centrality Node‑level A measure of influence in the network that takes into account second‑order connections. Eigenvector 
centrality of a node indicates its influence within the network based on the quality of its connections, con‑
sidering the centrality of its neighbours

Local clustering coefficient Node‑level A measure of likelihood that the connections of an individual are also connected. It reflects the level of clus‑
tering or cohesion within a node’s immediate social connections

Edge density Global The proportion of completed edges in the network. It indicates the overall level of connectivity withing 
the network, reflecting the extent to which individuals are interconnected through social interaction

Transitivity Global The amount of clustering in the network, calculated as a function of completed triangles relative to possible 
triangles. It reflects the degree of reciprocity in social interactions within the network

Diameter Global The shortest distance between the two most distant individuals in the network. It provides insight 
into the extent of social connectivity and potential pathways of information transmission

Mean degree Global Average number of connections of an individual in the network. It provides insight into the overall level 
of social engagement within the population

Mean strength Global Average strength of an individual in the network. It indicates the average level of social strength 
within a network
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Step 1. Pre‑network data permutations
We generated null models to assess whether the interac-
tions captured by the observed sample were genuinely 
caused by social preferences, as opposed to random asso-
ciations. Null models were constructed to account for 
non-social factors that led to the co-occurrence of ani-
mals. In animal social network analysis, null models are 
broadly classified in two ways: network permutations and 
pre-network permutations [27]. Network permutations 
are performed after the network is generated from the 
data, whereas pre-network permutations are performed 
on the data stream before generating networks from it. 
High resolution GPS telemetry observations often gen-
erate data in the form of autocorrelated streams where 
the extent of autocorrelation depends on the speed of 
the individual compared to time resolution. In the per-
muted versions of the data, we wanted to maintain this 
autocorrelation structure (if present) of each individual’s 
movements but randomise the contacts with other indi-
viduals. Therefore, we obtained pre-network datastream 
permutations as suggested by [27, 77]. For each individ-
ual in the study, we segmented the tracks walked each 
day. Then the dates on which those tracks were followed 
were shuffled for each individual. This methodology of 
permuting the pre-network data stream ensured unaf-
fected home ranges of animals in the permuted data, but 
whom they came in contact with was now randomised 
in the null model. This also preserved the autocorrelated 
structure of individual tracks to ensure realistic animal 
movements.

For each species, we obtained 1000 permuted ver-
sions of the raw data stream, giving rise to 1000 network 
structures. Then, we calculated global network sum-
mary statistics of density, mean strength, transitivity, 
and diameter for each of those networks and obtained a 
null distribution of values. Analysing the relative posi-
tion of the observed network metric’s point estimate with 
respect to the distribution of null values helped deter-
mine the metrics that capture non-random aspects of the 
observed network.

Step 2. Sub‑sampling from the observed network
We randomly sub-sampled m nodes from the observed 
network of N nodes where m < N  without replacement. 
All the associations among the sampled nodes were 
preserved, and the rest were dropped. This resulted in 
a network structure that would have been obtained if 
originally just these m individuals had been tagged from 
the population. In this way, we drew 100 samples of size 
m where the value of m ranged from 10% to 90% of the 
total nodes forming each network for five species. We 
recorded the values of global network metrics of density, 
mean strength, transitivity, and diameter and obtained a 

distribution of the values. We assessed the bias in the val-
ues of network metrics obtained from this sub-network 
compared to the original network. Performing this pro-
cedure across five species and for different values of m 
would reveal which network metrics are robust to sub-
sampling and should be adopted for social network stud-
ies on the target species and available samples.

We also applied a sub-sampling approach on the per-
muted networks to determine under what sampling level 
the observed networks resembled the random networks. 
We sub-sampled nodes from 1000 permuted network 
versions without replacement at different levels ranging 
from 10% to 90%. We calculated four global network met-
rics for each permuted version, and each level and their 
distribution were plotted along with the distribution of 
sub-sampled versions of the original network. This visu-
alisation was aimed to provide an estimate of the mini-
mum amount of subsampling required to ensure that the 
network differed significantly from a random network for 
that species and the associated environment.

Step 3. Bootstrapped confidence intervals for global network 
metrics
Assuming a researcher has chosen a set of network met-
rics appropriately, it would be prudent to consider not 
only the point estimate derived from their data but also 
the uncertainty associated with it. To create confidence 
intervals to facilitate the comparison of different net-
works (e.g., differing sampled individuals from the same 
population such as those living in areas disturbed by 
humans vs those that were not, or the same individuals’ 
networks computed at different times), we adapted the 
bootstrap algorithms of [74]. Similar to the algorithms 
used in SOCPROG [81] and UCINET [10], this algorithm 
sampled nodes in the network with replacement for each 
of B=1000 bootstrap replications. Each bootstrap repli-
cation network comprised the same number of nodes 
(animals) as the original network; however, some of the 
original nodes were absent, some were present once, and 
some more than once. In each replication, edges between 
any two different sampled nodes were retained, whereas 
edges between the same node resampled twice were ran-
domly chosen from the set of all original edges. Boot-
strapping has been used to infer uncertainty in animal 
social networks (see [54, 80]), however bootstrapping 
social network data should only be used carefully as zero 
edges (which could result from unobserved associations 
rather than two animals not associating at all) are resa-
mpled as zeros across all replications [28]. We, therefore, 
assessed whether such algorithms were appropriate for 
constructing confidence intervals for network metrics. 
See Assessment of bootstrapping algorithm for details on 
the assessment of our bootstrapping algorithm, including 
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the results showing correct calibration under the null 
hypothesis.

We examined how uncertainty was related to sample 
size and obtained confidence intervals using the boot-
strapped samples for each global network metric of 
density, mean strength, transitivity, and diameter for dif-
ferent sample sizes. We recorded the width of confidence 
intervals for each network metric corresponding to dif-
ferent sample sizes. Finally, we repeated this process ten 
times and calculated the mean width of the ten confi-
dence intervals against the number of individuals in the 
network. This provided the level of uncertainty associ-
ated with a particular network metric for a given amount 
of data.

Step 4. Correlation analysis between node‑level metrics 
of partial and full networks
To assess the accuracy of the node-level metrics inferred 
from a given sample, we evaluated the correlation 
between the values of the metrics in the observed sample, 
and a smaller sub-sample of the empirical data as sug-
gested by [37, 67]. First, we calculated node-level metrics 
of degree, strength, betweenness, clustering coefficient, 
and eigenvector centrality for each node in the observed 
network. Then we sub-sampled nodes from the observed 
network at 10%, 30%, 50%, 70%, and 90% levels without 
replacement and calculated node-level metrics for each 
sub-sample. Finally, we calculated the correlation coef-
ficient between the metric values of the nodes in the 
observed and partial networks. The process was repeated 
10 times at each level of sub-sampling, and the mean and 
the standard deviation were recorded from the 10 cor-
relation coefficients at each level. We also ran a regres-
sion analysis [67] to assess how the values of node-level 
metrics for partial networks relate to their values in the 
whole network (See Regression analysis between node-
level metrics of sub-sampled and observed networks).

Step 5. Bootstrapped confidence intervals for node‑level 
network metrics
To obtain confidence intervals around the node-level 
network metrics [25], we obtained 1000 bootstrapped 
versions of the network (as described in Step 3 of the 
workflow) for each species. In the bootstrapped versions, 
nodes were sampled with replacement with implications 
for the metric values of each node. If a node (e.g., A) had 
5 neighbours in the observed network, then in a boot-
strapped version, node A could have had more or less 
than or equal to 5 neighbours depending on what other 
nodes were chosen in that sample and how many times. 
This method enabled us to create a distribution of met-
ric values for node A that helped us understand how the 

choice of other nodes in the sample affected the observed 
metric value of node A.

We applied our workflow’s last four steps of subsam-
ple analysis, confidence intervals for global and node-
level metrics as well as correlation analysis on the fallow 
deer population of Phoenix Park, Dublin. The first step 
of our five steps protocol was omitted for analysing 
observational data of fallow deer, as it is only needed 
for GPS telemetry observations, where an arbitrary dis-
tance threshold is used to define two individuals’ prox-
imity. However, observational data already includes 
information about the group affiliations of each animal, 
and interactions occurring among them, making this ini-
tial step redundant. We therefore started with the second 
step, computing network metrics, and proceeded with 
the following steps of our protocol (See Analysis of fallow 
deer population in Phoenix Park for detailed analysis).

The protocol discussed above can also be applied to 
data collected through other techniques. Establishing a 
network structure involves compiling an edge list con-
taining information on interactions between pairs of 
animals. Data collection techniques such as proximity 
loggers and camera traps can also serve as efficient tech-
nologies for gathering the necessary data to construct 
such an edge list and subsequently form a network struc-
ture. Proximity loggers, when affixed to animals, pro-
vide data on instances when individuals come into close 
proximity to one another [84]. Camera traps offer spatial 
insights into interactions among two or more animals 
[14]. These eliminate the need for imposing arbitrary spa-
tial and temporal thresholds, as they inherently capture 
all genuine interactions. We conducted all analyses using 
R 4.1.3 [62] and the methods discussed as a part of our 
five step workflow are available as functions in the R soft-
ware package aniSNA [45, 46].

Results
Association index and network formation
The spatial threshold was 10  m for mule deer sam-
ple and 15  m for all other species data. The temporal 
threshold was arbitrarily chosen to be 7  min, which 
accounted for delays in signal reception by the GPS 
devices. For example, if a GPS unit recorded a location 
at 09:57 AM, the observations recorded until 10:04 AM 
were evaluated for potential interactions. Table 3 shows 
the values of network summary statistics for each of 
the five species. Note that each of these networks had 
distinct characteristics. Despite having a lower spatial 
threshold value, the mule deer sample captured a sub-
stantial number of interactions, as indicated by its high 
mean degree and mean strength values. The elk sam-
ple had the maximum diameter with a value of 9 which 
implied that it took a maximum of 9 steps to reach 

https://CRAN.R-project.org/package=aniSNA
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from any individual to another in the elk network. The 
pronghorn sample had high transitivity and mean local 
clustering coefficient, indicating that any two associates 
of a pronghorn were likely to be associated with each 
other. The values in table 3 are indicative of the varia-
tion in different datasets included in the study and in 
any scenario, these networks should not be compared 
to one another in terms of metric values as the data col-
lection was not standardised across different species. 
Figure 1 shows the network structures obtained for all 
five species.

Step 1. Pre‑network data permutations
For pronghorn and roe deer samples, the observed val-
ues were significantly different from the distribution 
of permuted network values (Fig.  2), indicating that 
these two samples captured non-random aspects of 
the population very well. Also, for all five species, the 
mean strength of the observed network was higher than 
the permuted networks (Fig. 2). This indicated that all 
these samples captured higher association rates than 
would be expected from a random network under sim-
ilar assumptions. For caribou, elk, and mule deer, the 
observed value of transitivity was within the distribu-
tion of null values. In general, researchers should avoid 
making inference using those network metrics on data 
whose observed values lie within the distribution of 
null values. This is because, in that case, the network 
structure obtained from the available sample does not 
capture the non-random aspects of interaction con-
cerning that particular network metric. To effectively 
demonstrate the remaining four steps of the proto-
col, we opted to analyze all five network metrics. This 
has allowed us to showcase the practical applicability 
of each step in the protocol and provided a thorough 
understanding of how each metric operates within the 
context of each species’ social network. Through this 
comprehensive demonstration, we have highlighted the 
versatility and effectiveness of the protocol in elucidat-
ing various aspects of social network analysis across 
different species.

Step 2. Sub‑sampling from the observed network
Performing sub-sampling on the observed networks 
of five species at various levels revealed the network 
metrics density and transitivity as the most stable and 
unbiased (Fig. 3). The uncertainty in these two metrics 
was comparatively low for four out of the five species, 
even when just 30% of the individuals were present in 
the sub-sample. Their distribution was centered on 
the true values, and this allowed us to estimate bias if 
the proportion of sampled individuals were known. 

Transitivity at a sub-sampling level of 10%, 10%, and 
30% became unreliable for caribou, pronghorn, and roe 
deer respectively, implying that this metric was a poor 
measure when the sampling proportion was very small. 
The bias in mean strength values followed a linear pat-
tern when the sub-sampled proportion was reduced 
from 90% to 10% for all five species. The linear pat-
tern suggested that the bias for mean strength can be 
corrected if the sampling proportion was known. This 
linear increase must, however, plateau as we approach 
a census of the population [7]. The network’s diam-
eter followed a staircase pattern with lowering sub-
sampling levels but it was not linear for all five species 
and tended to plateau. Diameter and mean strength 
were directly affected by the number of nodes present 
in the sample. Therefore, care should be taken while 
using these metrics when the sampling proportion is 
unknown.

We performed subsampling on 1000 permuted ver-
sions of the network along with the subsampling on 
the observed network. The side-by-side visualisation of 
the network metrics distribution (Fig. 4) enabled us to 
identify the sampling level at which a subsampled net-
work began to resemble a random network and we can 
no longer make correct inference about an ecologically 
relevant hypothesis. The plots revealed that for caribou, 
elk, and mule deer, network metrics density, transitiv-
ity, and diameter distribution became identical to that 
of a null network at 90%, 90%, and 70% subsampling 
levels respectively. Nevertheless, mean strength distri-
bution increasingly overlapped with the distribution 
of subsamples from the null network when the level of 
sub-sampling was lower than 90%. For pronghorn, the 
distribution of all the network metrics obtained from 
subsamples of the observed network was higher than 
the values obtained from the subsamples of the null 
networks at all sampling levels. For roe deer, this was 
only true for mean strength. The distribution of density 
and transitivity values overlapped the null distribution 
at 50% and 30% levels, respectively.

Step 3. Bootstrapped confidence intervals for global network 
metrics
We used bootstrapping to investigate the extent of uncer-
tainty in the values of network metrics and obtain con-
fidence intervals for each network metric. To observe 
how uncertainty varies with respect to lowering sample 
sizes, we plotted the width of confidence intervals against 
the sample size (Fig.  5a). For the network metric den-
sity and transitivity, the mean width of the confidence 
intervals increased with decrease in sample size for all 
five species. Mean width for density remained compara-
tively low for as few as 50 samples but began to increase 
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below that value for all five species. For transitivity, the 
width remained less than 0.2 when at least 100 individu-
als were tagged for all species but roe deer. The minimum 
width for roe deer was 0.4, even when all the individuals 
in the sample were considered. At smaller sample sizes, 
mean width approached 1 for all the five species, which 
is the maximum value transitivity can attain for any net-
work. Therefore, to check that these confidence intervals 
were not too wide and increased the likelihood of Type 
1 errors, we compared two non-overlapping sub-samples 
from the observed sample to check for significant results 
(See Assessment of bootstrapping algorithm). This 
ensured that the bootstrapping algorithm does not gen-
erate spurious statistically significant results.

For mean strength and diameter, the width of confi-
dence intervals did not increase with a decrease in the 

sample size. This is because the values of these metrics 
were directly affected by the number of nodes in the net-
work e.g., say there were N nodes in the network, the 
possible degrees of a node could be anywhere between 
0 and N-1; however, if we remove M (< N) nodes from 
the network, the new possible value for the degree would 
lie between 0 and (N-1)-M, which resulted in a narrower 
width of the confidence intervals. Therefore, it is better 
to consider the scaled versions of these metrics where 
they are scaled by the number of nodes in the network 
(Fig.  5b). The scaled versions of these metrics followed 
a similar pattern to transitivity and density. The width 
of confidence intervals increased with a decrease in the 
number of individuals sampled. Some fluctuation in this 
pattern was observed for the density and scaled diame-
ter for some species, when the sample size was low (e.g., 

Fig. 1 Network structures for the five large herbivores analysed in this study. Each node is an animal, and an edge between two nodes indicates 
that they have interacted at least once. Note how the pronghorn network is denser than the roe deer network despite having a very similar number 
of nodes. Also, note the clear partition in the caribou network

Fig. 2 Rows correspond to the five species, while columns correspond to four standard network metrics. Each plot represents the distribution 
of network metric values obtained from 1000 permuted versions of the species network. The red bar in each plot represents the position 
of observed network’s metric value. For all five species, the observed value of mean strength was higher than the mean strength values 
from the permuted versions, indicating that all the samples successfully capture non‑random interactions between the individuals. The network 
metrics whose observed value lie within the null distributed values indicate that those metrics are not different from a randomly generated 
network, such as the density and transitivity of caribou

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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roe deer sample). Depending on the selection of nodes 
in the sub-sample, the value of the diameter in the sub-
sampled network can reach extreme values at each level 
of sub-sampling.

The analysis of confidence interval widths highlighted 
the extent to which uncertainty increased as the number 
of tagged animals decreased. Researchers are advised to 
apply this bootstrapping method to establish confidence 
intervals around their observed network statistics. Boot-
strapping method allows for calibrated estimation of con-
fidence intervals, enabling the users to correctly perform 
hypothesis testing. For instance, they can correctly deter-
mine whether their particular data can be considered to 
be different from another dataset or if there are seasonal 
differences, among other things.

Step 4. Correlation analysis between node‑level metrics 
of partial and full networks
The correlation of all network metrics between the sub-
sampled and observed network declined as the propor-
tion of sub-sampled nodes in the network decreased 
(Fig. 6). However, the pattern and rate of decline were dif-
ferent across network metrics. Degree remained well cor-
related for mule deer when as few as 10% of nodes were 
sub-sampled. Mean correlation coefficients of strength, 
betweenness, and clustering coefficient declined almost 
linearly with a decrease in the sub-sampling proportion, 
with slightly more variance in caribou values than mule 
deer values. For both species, the values for eigenvector 
centrality became unreliable with high variability even 
when 90% of the individuals were present in the sub-sam-
ple in most of the sub-sampled networks, suggesting that 
it was a poor measure to use in this case.

Step 5. Bootstrapped confidence intervals for node‑level 
network metrics
We plotted the observed network metric values along-
side the confidence intervals for each node of the cari-
bou social network as an example in Fig.  7. The nodes 
were sorted in decreasing order of the observed metric 
value to improve readability. Uncertainty varied depend-
ing on the selection of the nodes in the sample (Fig. 7). 

Moreover, the confidence intervals overlapped indicat-
ing that the observed rankings could change depending 
on the selection of individuals in the sample. In addition, 
some nodes were more likely to have a higher degree 
than observed, while others were more likely to have a 
lower degree than observed. The node with the highest 
strength value has zero in its confidence interval, indicat-
ing no significant relationship with its neighbours. Inter-
estingly, its true strength could be over 0.8. The node 
with the highest betweenness value of over 250 in the 
observed sample may have a value as low as 10 in some 
other sample. The observed values, in this case, were not 
just influenced by immediate neighbours but also by the 
choice of other nodes in the sample. A high uncertainty 
in clustering coefficient values was influenced by not just 
the number of neighbours sampled but also the number 
of times they were sampled. The network metric eigen-
vector centrality showed polarisation in node values. 
Twelve nodes with observed values near zero showed a 
tendency to reach as high as 1, which could be identified 
using the bootstrapping technique. These results for the 
uncertainty in node-level network measures also explain 
the magnitude of bias and uncertainty in global network 
metrics that we noticed while subsampling. Because 
density is a summary of degree, low uncertainty in the 
node-level measurements of degree and a linear trend 
in the ranks explain the low uncertainty and bias in the 
global network metric of density. The plots for eigenvec-
tor centrality, on the other hand, do not have a linear 
trend in ranks with a few nodes having a high observed 
value with a considerable uncertainty. The presence of 
these nodes in the subsample significantly impacts the 
average eigenvector centrality of the network, resulting 
in high variance in correlation coefficient values. Results 
for the workflow analysis of the fully observed popula-
tion of Phoenix Park are presented in Analysis of fallow 
deer population in Phoenix Park in detail. The patterns 
in those results are strikingly similar to what we observed 
for the five ungulate populations tracked by means of 
satellite telemetry; however, a high correlation and low 
uncertainty was observed for both node-level and global 
network metrics at even lower levels of subsampling, 

(See figure on next page.)
Fig. 3 Effect of sub‑sampling on four global network metrics. The horizontal red line in each plot represents the metric value in the observed 
network. The boxplots denote the distribution of network metric values obtained from the observed networks by taking 100 sub‑samples at each 
sampling level. The size of the boxes in the boxplots of a network metric with respect to the sample size represents the extent of uncertainty 
in that network metric. For example, density has smaller boxes when as low as 10% of the nodes are selected. In contrast, the box size for transitivity 
is large, representing that density is more stable than transitivity. The extent of deviation of the box position from the horizontal red line depicts 
the bias in the calculated values of the network metric. The values of mean strength become biased as the sample sizes are lowered. This 
is because mean strength values are directly affected by the number of nodes present in the network
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Fig. 3 (See legend on previous page.)
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owing to the high proportion of individuals observed in 
the population.

Discussion
We have presented a five-step workflow to assess the sta-
bility of global and local network metrics and obtained 
uncertainty measures around the point estimates of the 
network metrics obtained from GPS telemetry observa-
tions. This workflow can be used to obtain reliable infer-
ences about the structure of a social network and we 
have demonstrated it on telemetry observations of five 
species of ungulates. First, using data permutations, we 
found whether the sample data captured non-random 
aspects in all or some of the network metrics: this was 
entirely true in roe deer, for instance, whereas in other 
species such as elk the data collected were able to cap-
ture non-random associations only with edge density and 
mean strength. Two of the five species data provided evi-
dence that all aspects of the network differed from ran-
dom, while the other three showed only specific aspects 
deviating significantly. This highlighted a key strength of 
our five-step protocol. By systematically evaluating dif-
ferent network metrics, the protocol helped determine 
if the collected data was suitable for addressing specific 
hypotheses. This is a key step in our approach, because 
at this stage the researcher can make the decisions on 
whether to use such metrics in their study case. Second, 
sub-sampling from the observed sample revealed density 
as the most unbiased measure of animal networks with 
low uncertainty, even at small sub-sampling propor-
tions. Third, we introduced bootstrapping techniques 
for animal social networks, which allowed us to com-
pute confidence intervals around the point estimates 
of the network measures. Density and scaled version of 
mean strength emerged as two of the most robust net-
work metrics. Fourth, correlation analysis between the 
node-level metrics of the observed network and the sub-
sampled network highlighted the network metric degree 
to be most correlated with the observed network metric 
values, even at 40% of sub-sampling levels. This means 
that if the information about sampling proportion were 
available, the relative degree of each individual could be 
used to estimate the true degree distribution. Lastly, we 
were able to establish confidence intervals for each node’s 

network measure by performing node-level bootstrap 
analysis. This not only identified the nodes of the social 
network with extreme metric values for a given network, 
but also the nodes that have a tendency to attain extreme 
values not observed otherwise, owing to the selection of 
other nodes in the sample. Furthermore, for any specific 
node of interest, we could determine if it was more likely 
to have a greater true value than observed or a lower true 
value based on the length of its upper and lower confi-
dence intervals. All of the workflow steps are provided 
as functions in the R package, aniSNA [45, 46] allowing 
users to undertake such an analysis of their data. We have 
summarised the steps that should be taken to perform 
this analysis in Box 1. Line-up of steps.

Despite being a commonly used tool to understand ani-
mal ecology [42, 49, 64, 68, 75, 76], social network analy-
sis can be challenging when applied to real-life datasets 
[15, 26]. [15] performed tests to demonstrate a distinc-
tion between networks built using different interaction 
and proximity techniques. Similar tests performed by 
[26] illustrated that the conclusions by [15] cannot be 
generalized across species. A researcher’s choices dur-
ing the data collection and the analytical stage affect the 
networks produced. Therefore, the inferences generated 
may not reflect true characteristics and can be highly 
sensitive to these decisions [15, 32]. Furthermore, the 
information available about the sampling protocols may 
be incomplete. However, this does not imply that social 
network analysis should not be conducted on such data. 
While understanding the limitations of the data one is 
working with, it is prime to use statistical methods that 
would help extract as much information as possible, 
along with details about the uncertainties due to par-
tial data and sampling strategies. Performing permuta-
tions to randomise autocorrelated GPS data stream [27, 
77] is a first step to check if the selected network met-
rics capture the non-random aspects of social inter-
actions. Different network metrics capture different 
aspects of the network; some networks may have more 
non-random elements than others, depending on the 
species’ sociality and the sampling strategies adopted to 
collect the data. Our analyses have helped highlight the 
network metrics that distinctively capture these non-
random aspects. Researchers are advised to not use 

Fig. 4 Sub‑sampling of permuted networks. The grey boxplots are obtained by calculating network metric values on 1000 permuted versions. The 
non‑grey boxplots are the ones that we obtained in Fig. 3. The horizontal red line in each plot represents the observed metric value. Comparing 
the subsamples of the observed network with those of permuted networks identifies the sample proportion where the non‑random aspects 
of the observed network start looking similar to those of random networks. For example, the mean strength of caribou subsamples in the observed 
network starts to overlap with the distribution of permuted subsamples at 70% level and becomes almost identical at 10% level. On the other hand, 
the mean strength distribution of pronghorn subsamples remains higher than those of permuted subsamples distribution at as low as 10% level

(See figure on next page.)

https://CRAN.R-project.org/package=aniSNA
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Fig. 4 (See legend on previous page.)
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this permutation approach for “searching” the non-ran-
dom metrics. Instead, they should use it to evaluate the 
adequacy of their dataset and determine if the network 
metrics, selected based on expert ecological knowledge, 
effectively capture non-random aspects. Also, the null 
models obtained here cannot fully disentangle social 
preferences from fine-scale spatio-temporal behaviour 
patterns as those are not attainable with association data 
alone. Based on our analyses of the five species, the net-
work metric mean strength is recommended to be used 
as an assessment metric to identify if the captured inter-
actions are significant enough to generate reliable analy-
sis results. Indeed, apart from the four network metrics 
we chose to work with, it could be helpful to run this 
analysis on other network metrics that seem suitable for 
the particular research question (e.g., coefficient of the 
variation of edge weights [57]). Once a network metric 
is chosen by the user, further analysis of the available 
dataset can be carried out to answer the research ques-
tion. Researchers should keep in mind that this approach 
is particularly suited (but not limited) to autocorrelated 
telemetry relocation, although its use could be expanded 
to more rarefied observational data (e.g., low frequency 

observations of individually recognizable individuals in a 
population, similarly to what we have done with the fal-
low deer study case).

Caution should be taken while reporting the values 
of social network metrics when the sample size is small 
relative to the population [29, 54]. As a general rule, the 
smaller the sample size, the more considerable uncer-
tainty can be expected in the observed values. How-
ever, some network metrics remain unbiased despite 
significant uncertainty, whereas others would become 
biased as the sample size decreases. Sub-sampling from 
the observed sample and permuted versions of the net-
work revealed helpful information regarding the stabil-
ity of certain metrics and the proportion of individuals 
required to ensure a non-null network. For the samples 
we used, density and transitivity emerged as the more 
stable metrics, remaining unbiased when as low as 10% 
and 30% of the individuals were sub-sampled, respec-
tively. Network metrics such as mean strength became 
biased as we lowered the number of nodes in the sub-
network. However, it was well characterised by a linear 
relationship. The choice of individuals in the sub-sample 
greatly affected some network metrics such as diameter. 

Fig. 5 The plots show the mean widths of 95% confidence intervals obtained from bootstrapped sub‑samples of a network. The mean widths 
of density and transitivity increase with lower sample size, which indicates increasing uncertainty around the point estimate of the network metrics. 
However, the pattern is reversed for mean strength and diameter because the values for these two metrics are directly affected by the number 
of nodes present in the network. Therefore, we consider scaled versions of these two metrics where the number of nodes at each level scales 
the values
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However, it always tended to plateau when the propor-
tion of sampled individuals increased. Sub-sampling from 
permuted versions of the data and comparing it with the 
distribution of sub-samples from the observed network 

revealed the minimum sub-sampling level required to 
ensure a non-null network structure. [22] investigated 
the effect of sampling effort on the accuracy of social 
network analysis and concluded that increased sampling 

Fig. 6 The plots show the correlation of node‑level network metrics of the sub‑sampled nodes and the same nodes in the observed networks. 
The black line in the plots indicates the mean correlation coefficient value and the colored region depicts the standard deviation of the correlation 
values at each sampling level. For example, degree value remains highly correlated with comparatively low standard deviation, even at lower 
sampling levels
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intensity may not always increase the accuracy of net-
work measures especially when the sampling regime was 
already very intense.

Reporting point estimates for metrics is not enough 
especially when a large proportion of individuals in the 
population is not monitored. It becomes equally impor-
tant to communicate uncertainty around those estimates 

Fig. 7 From top to bottom, node‑level caribou network metrics (and associated 95% confidence intervals) for degree, strength, betweenness, 
clustering coefficient and eigenvector centrality, respectively. The nodes are sorted by decreasing order of observed metric to improve readability
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[54, 80]. We presented bootstrapping as a powerful 
approach to evaluate confidence intervals around the 
point estimates of global and node-level network met-
rics from the observed data. Bootstrapping enabled us to 
assess the extent of variation in the global network met-
rics if a different set of individuals was sampled from the 
population. The network metrics of density and scaled 
mean strength had low uncertainties, even at small sam-
ple sizes for the data of five species that we used. Obtain-
ing bootstrapped confidence intervals for node-level 
metrics allowed the characterization of social network 
values at individual level along with their uncertainty val-
ues which can be used in further analyses and hypothesis 
testing when the researchers also have other information 
on the single individuals (e.g., movement rate, behaviour, 
life history traits such as mating success and survival).

Past studies have tried to uncover how the values of 
node-level metrics are affected when the sample sizes 
are lowered [17, 34, 67]. We have built on the simula-
tion studies of [67] by performing the correlation and 
regression analyses between the local metric values 
of the nodes in the entire sample and the values of the 
same nodes in a smaller sub-sample of our empirical 
data. With correlation analysis at various subsampling 
levels, we determined how the correlation rate decreases 
as the sub-sample size is lowered. Out of the five node-
level metrics that we tested, degree performed better, 
with high correlation even at low sample proportions. 
Also, we recommend not using eigenvector centrality if a 
large proportion of the population sample is not available 
as the metric being a higher-order statistic lacks robust-
ness and, therefore, is highly sensitive to the selected 
nodes. This was confirmed through our node-level analy-
sis on the five datasets and also agrees with the simula-
tion study by [67]. We conclude that care should be taken 
while comparing the metric values between nodes when 

a small proportion is tagged from the population. Indeed, 
the social network positions captured by a small sample 
may not reflect the actual positions in the network in 
such cases.

The primary goal of the proposed workflow is to quan-
tify the bias and uncertainty in empirical data, and the 
analysis of Phoenix Park fallow deer population has effec-
tively verified the purpose of this workflow. The analy-
sis showed how uncertainty and bias in both global and 
node-level metrics vary with decreasing sample propor-
tions. Including Phoenix Park data has demonstrated the 
robustness of our workflow, something not achievable 
with simulated data. Simulated data lacks the complexity 
of empirical data and sets unrealistic standards for meas-
uring uncertainty in animal social networks.

The goal of this paper was not to make inferences about 
the network characteristics of an entire population of any 
species but to present ways that assist in analysing how 
different network metrics scale under downsampling 
depending on the availability of data. As a matter of fact, 
despite having access to large telemetry samples from 
five different species, they represent a subset of a popula-
tion with unknown size. The methods discussed here can 
help pinpoint useful social network metrics that remain 
robust when trying to answer a particular research ques-
tion. Those metrics that suffer from data thinning and 
become unstable should not be used with telemetry data, 
which is typically used to monitor a small proportion of 
the actual population. Also, we used data from multiple 
species of large herbivores with very different ecology 
and characteristics, including migratory/non-migratory 
from very social to solitary species. Despite our a priori 
disregard of the ecology of the five species for the reasons 
stated above, we found interesting differences among 
them which deserve to be discussed here. Firstly, the fact 
that the data collected from a more solitary species such 

Box 1 Line‑up of steps

1. Define the network edges by choosing a sensible distance threshold based on the research question, species sociality, and information obtained 
from the data (see section Identifying Associations and Network Construction for more details).

2. Check if the interactions captured by the sample are non‑random with the help of network permutations. Network metrics can be deemed suitable 
after assessing whether they capture non‑random associations via network permutations (Step 1).

3. Identify stable network metrics concerning the species and the available sample using sub‑sampling from the observed data (Step 2).

4. Identify the minimum sampling effort required to determine the network properties that are different from a randomly generated network by com‑
paring the sub‑sampled networks from permuted data sets with the sub‑samples of the observed data (Step 2).

5. Obtain confidence intervals around the point estimates of network metrics using the bootstrapping algorithm, which also takes into account 
the autocorrelated structure of telemetry relocation data. The width of confidence intervals can also be analysed for lowering sample sizes (Step 3).

6. To assess which node‑level network metric remains least affected with lowering sample sizes, obtain a correlation coefficient between the node‑
level metrics from the observed sample and the same nodes from the sub‑sample. The local network metrics with a high correlation (>0.7) are 
expected to be more stable and should be chosen for further analysis as they are more likely to represent the position of individuals in the network, 
similar to their position in the full population (Step 4).

7. To estimate the uncertainty in the observed values of node‑level network metrics, obtain confidence intervals around the point estimates for each 
node (Step 5).
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as roe deer (See Table 3) better capture the non-random-
ness of the association compared to more gregarious spe-
cies such as elk suggests that sample size (in proportion 
to the actual population size) should be higher in more 
gregarious species especially while using global network 
metrics for analysis. In addition, sampling regimes can 
affect the social network patterns and related ecologi-
cal inference. For example, a high-density value of the 
roe deer network as compared to the distribution of null 
networks could be due to the fact that sampling was con-
ducted across six spatially separated capture sites (within 
10 x 10 km). This results in very low density values when 
the data is permuted across these six clusters (Fig.  8). 
Instead, the mule deer’s initial locations (Fig.  8) show 
that the network is already very dense. In the permuted 
versions of the raw data, the number of random interac-
tions is similar to the number of observed interactions, 
resulting in an observed network density value simi-
lar to the density of permuted versions of data. In other 
words, the sampling strategy (location of the capture 
sites) may affect the spread of individuals and the density 
of the respective network structures, therefore research-
ers need to focus on the ecological interpretation of their 
social network results after having taken into account the 

possible bias introduced by sampling strategies. The five-
step protocol provides useful tools for assessing uncer-
tainty and can deliver reliable results when used with 
representative samples. However, it cannot address or 
rectify inherent biases in the initial sampling. Research-
ers need to be aware of this limitation and recognize that 
it is not intended to correct any pre-existing sampling 
biases in the data.

Numerous papers have examined the conceptual prop-
erties of centrality measures to assist animal social net-
work researchers in selecting the most meaningful and 
valid measure for their research question and the avail-
able data [9, 29, 35, 36]. The performance of network 
centrality measures under various sampling regimes and 
the species sociality could vary to a great extent [17, 23, 
38] and our work confirms this. Future work involves 
analysing the effects of observation frequency and dura-
tion on the accuracy of network metrics. For example, it 
could help to understand if it is better to observe indi-
viduals for a longer duration with low temporal resolu-
tion or a shorter duration with high temporal resolution. 
In our analysis, sub-sampling on the observed samples 
was random. However, this differs from the sampling 
strategies adopted in real life. [71] investigate the effects 

Fig. 8 Plot of the initial locations for the individuals belonging to five species in the study. The scale bars are present at the top right corner of each 
map. The distribution of these locations explains some of the differences in the values of network metrics. For example, the initial capture locations 
of mule deer are spatially very close, which is also reflected in the network metric values of the final network of associations. As a result, the mule 
deer network has the highest mean strength and mean degree (Table 3). In contrast, the roe deer network has the lowest mean strength and mean 
degree, partially explained by their six spatially separated capture sites
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on estimates of key network statistics when central nodes 
are more/less likely to be missing. Application of our 
methods to determine how the network metrics scale 
when a different sampling strategy is adopted would 
be valuable (e.g., whether it is better to sample entire 
groups, or focus on greater sampling frequency of indi-
viduals). Another vital direction forward is to assess the 
methods presented in this paper to be tested on the GPS 
telemetry data of the entire population. If data on the 
whole population is available (e.g., a fenced one), it will 
be interesting to perform these methods on a subset of 
that and test if the predictions align with the true values. 
This approach could facilitate more robust measures to 
evaluate the reliability of social network metrics derived 
from incomplete data. In future research, there is also a 
potential to utilize the protocol to identify bias through 
deliberate subsampling with known biases. This deliber-
ate manipulation would enable a deeper exploration into 
the detection of biases and their effects on network met-
rics. This approach would offer insights into the impact 
of bias on metrics, aiding in comprehension and poten-
tially informing the development of corrective methods.

Conclusions
Along with all of the advantages in understanding ani-
mal ecology, SNA presents certain challenges that hinder 
ecologists from using it to its full extent. We addressed a 
few of those challenges in this paper and introduced a 
five-step workflow to assess the suitability of available data 
for SNA and extract information for further analysis. The 
methods are also provided as easy-to-use functions in an 
R package aniSNA [45]. This package allows ecologists to 
directly apply these statistical techniques and obtain easily 
interpretable plots to provide statistical evidence for choos-
ing a particular network metric or the choice of individu-
als tagged for the study [46]. The fact that researchers can 
compute confidence intervals around their point estimates 
unleashes new research opportunities, such as tackling 
specific hypotheses. For instance, researchers can estimate 
network metrics in a sample population when it is dis-
turbed by human presence to be compared to when it is not 
disturbed, and the ability to assess the overlap of respective 
95% confidence intervals would allow making inference on 
the effect of human disturbance on sociality. Likewise, this 
approach can be used to compare social networks within 
and across populations as a function of temperatures, pres-
ence of predators, or different wildlife management strate-
gies, unleashing a range of ecological questions using SNA 
and related statistical tools.

Appendix 1: Assessment of bootstrapping 
algorithm
We bootstrapped two different subsamples of a social 
network at each subsampling percentage. Given that the 
subsamples were taken from the same population, any sig-
nificant differences should be attributed to overly confident 
bootstrapped intervals and non-significant results were 
to be expected. We repeatedly sampled pairs of networks 
at each subsampling level and computed the p-value for a 
significant difference between the two network metrics, as 
determined using a two-tailed t-test as per [74] (see Step 
3. Bootstrapped confidence intervals for global network 
metrics for more details). If the subsampled networks do 
indeed provided noisy estimates of the network metric cal-
culated across the population and the bootstrap algorithm 
did not return intervals that were too narrow, the B boot-
strapped p-values would not contain more than approxi-
mately α B values less than α (for any significance level α ). 
Indeed, the p-values would ideally be uniformly distributed 
between 0 and 1. We do not perform tests of our boot-
strapping approach with regard to power / Type 2 errors 
because, as with all hypothesis tests, the power to correctly 
identify real differences in network metrics between two 
different social networks depends not only on sample size 
but also on the magnitude of the differences. The larger the 
sample size and the larger the true difference, the greater 
the power to identify that the networks differ.

For all the network metrics, p-values for difference 
between two samples is non-significant for all the five 
species (Fig.  9) which indicates that our bootstrapping 
approach is not overly sensitive i.e. return too many false 
positive results when used to compare the network metrics 
of two networks.

Appendix 2: Regression analysis 
between node‑level metrics of sub‑sampled 
and observed networks
While analyzing node-level metrics from a partially sam-
pled network, it is useful to know the extent by which 
the position of an individual in the population controls 
its position in the sampled network and how this control 
depends on the choice of individuals in the sample or 
density of the population.

To answer this, we perform regression analysis such 
that the values of node-level metrics in the sub-sampled 
networks are regressed on the values of those nodes in 
the observed network. As in the correlation analysis, the 

https://CRAN.R-project.org/package=aniSNA
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individuals are further sub-sampled to analyse the effect. 
Sub-sampling is done at 10%, 30%, 50%, 70% and 90% lev-
els and is repeated 10 times at each level. The mean slope 
of regression is calculated for the five network metrics 
of degree, strength, betweenness, clustering coefficient 
and eigenvector centrality at each level for each run of 
the simulation. The slope of regression describes how the 
value of network metrics calculated in each partial net-
work relates to its value in real network as per [67].

The slope of regression is plotted against sampling pro-
portion (Fig. 10) The accuracy of node-level metrics from 
partial networks is highly dependent on the metric being 
used. In agreement with the results of the simulation 
study by [67], the accuracy of local measures of degree 
and strength decreases linearly in direct proportion to 
the proportion of individuals subsampled. In contrast, 
the accuracy of eigenvector centrality does not depend on 

that proportion in any of the networks except for elk net-
work. The value of the slope of regression for between-
ness decreased non-linearly for four of the species that 
have low number of individuals tagged and followed a 
near-linear pattern for mule deer that has high number of 
individuals observed. The accuracy of the clustering coef-
ficient did not decrease till the level of identified individ-
uals was as low as 50% but declined rapidly at different 
levels after that for each of the species.

[67] suggests that the strong relationship between the 
proportion of individuals sampled and the accuracy with 
which local measures (degree and strength) predict the 
actual value of an individual’s centrality is notable. This 
implies that it is possible to correct for this effect if the 
proportion of sampled individuals in a population is 
known.

Fig. 9 Mean of p values for the difference in network metrics values for two non overlapping sub‑samples of the observed sample. The two 
non‑overlapping sub‑samples are bootstrapped 1000 times and p‑values are computed for to check for the significance of difference. This process 
is replicated 10 times to obtain mean of p values. The red dotted line in each plot corresponds to value 0.1 on the y‑axis. All the mean p‑values lie 
well above this dotted line
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Appendix 3: Analysis of fallow deer population 
in Phoenix Park
The data for the five species of ungulates reported in 
the main manuscript and chosen for the analysis and 
demonstration of the five step workflow consisted of a 
subset of the populations for which the exact sizes were 
unknown, therefore the precise proportion of indi-
viduals sampled within each population was unknown. 
However, to demonstrate the validity of our workflow, 
we had included a sixth dataset in this analysis as sup-
plementary material belonging to the fallow deer 
(Dama dama) population of the Phoenix Park in Dub-
lin, Ireland. This dataset was different from the five 
datasets included in the main manuscript for the fol-
lowing reasons. Firstly, fallow deer in this population 
are routinely captured and ear-tagged within a few days 
after birth [2], and observed by intensive monitoring 
programs [39], meaning that precise and accurate esti-
mates on population size as well as on the proportion 
of ear-tagged individuals are available for this popula-
tion. Each year, with over 500 out of 600 individuals 
tagged, this dataset offers a highly robust social net-
work analysis and serves as an ideal choice to validate 
the five step protocol. This is because in similar studies, 
GPS telemetry usually covers less than 10% of the total 
population.

Secondly, fallow deer in Phoenix Park are monitored 
via standardised visual observations [3, 39] usually at a 
frequency of a few observations per week opposed to 
the high frequency data collected via satellite telemetry, 
therefore giving us the opportunity to verify the effec-
tiveness of our protocol on a different type of data than 
those presented in the main manuscript. Assessing the 
validity of our approach in a completely different eco-
logical context (peri-urban) and sampling design (vis-
ual observations opposed to satellite telemetry) makes 
our protocol accessible to the broader users and not 
only limited to satellite telemetry data.

Study site
The data in this analysis have been collected in the popu-
lation of fallow deer residing in Phoenix Park, a 709  ha 
peri-urban park located less than 2 km from Dublin city 
centre, Ireland (53◦ 22’ N, 6 ◦ 21’ W). Phoenix Park is one 
of the largest enclosed urban parks in Europe and hosts 
a fallow deer population of slightly more than 600 free-
ranging individuals (end of summer estimates, including 
newborn fawns), which are kept to a steady population 
size by 2–3 yearly culls. The adult population is sexually 
segregated for most of the year with adult females and 
males only coming together for mating during the rut 
season (September to early November).

Fig. 10 Regression analysis of local network metrics between the nodes of partial and observed network. In each plot, X‑axis denotes 
the proportion of nodes in the sub‑sample and Y‑axis shows the corresponding value of the slope of regression calculated by regressing the local 
network metrics of sub‑sampled nodes and observed network nodes
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Data collection
The data used for this analysis were observational data 
collected between May 2018 and January 2023. The data 
included one weekly data collection conducted between 
August and April each year, whereas the months between 
May and July were surveyed more frequently (almost 
every day) because of a concurrent human-deer interac-
tion study (see [39]. The observations were carried out 
strictly following a stratified sampling design based on 
time of day, day of the week and area of the park. When-
ever a fallow deer group was encountered, the following 
data were recorded: herd size, identity of all individuals 
recognizable by unique colour-coded ear-tags, exact pro-
portion of tagged vs untagged individuals, location (using 
a Garmin GPS hand-held unit) and time of observation. 
Any herd was defined as a group of 1 or more individuals 
being within 50  m and in view of each other. For more 
information on the sampling protocol see [39]—which 
was defined for the core data collections of May–July, and 
strictly followed by the weekly surveys from August to 
April. During the study period,  85% of the overall popu-
lation was individually recognizable by unique ear-tags.

Data analysis
From May 2018 to January 2023, nearly the whole popu-
lation was monitored for this observational data. There 
were 951 nodes in the resulting network, and over 
250,000 interactions were observed. This was a dense 
network whose summary is given in Table 4.

When analysing the observational fallow deer data, we 
had omitted the first stage of our five-step workflow. The 
first step is better suited to GPS telemetry observations 
where an arbitrary distance threshold is selected to define 
when two individuals are deemed to be together, there-
fore null networks are generated by permuting a pre-net-
work data stream to determine if the network structure 
obtained from the available sample of GPS observations 
captures any non-random aspects of the association. 
When dealing with the observational fallow deer data 
and already defined groups, we therefore moved on with 
the second step by computing the network metrics that 
we were interested in.

Analysing subsamples of the observed network (step 2 
of the protocol)
We obtained 100 subsamples with the node counts rang-
ing from 0.5 to 90% of the observed network and gener-
ated plots similar to those from the sub-sampling analysis 
of the five species presented in the main manuscript. The 
results plotted in Fig. 11 demonstrate that even at lower 
sampling levels of 5–10% of the entire population, density 
and transitivity are accurately estimated with no bias and 

small variance. Up to 5% of the monitored population, 
diameter estimates are highly uncertain, but above that 
point, they are highly accurate and precise. The network 
metric mean strength increases with sample size, allow-
ing estimation of population mean strength using linear 
extrapolation to 100% sample size if the actual population 
size is known.

Bootstrapped confidence intervals for global network metrics 
(step 3 of the protocol)
We obtained 1000 bootstrapped samples at different lev-
els of sampling with the number of nodes varying from 
50 to 900. We calculated the four global network met-
rics density, scaled mean strength, scaled diameter and 
transitivity for each bootstrapped network at each level 
and obtained corresponding confidence intervals. Plot-
ting the width of confidence intervals against the sample 
size showed a similar pattern to those of the five species 
we reported in the main manuscript. As expected, with 
a decrease in the size, the confidence intervals widened. 
However, it was interesting to note that the confidence 
interval width for density, scaled mean strength and tran-
sitivity remained comparatively low at a 40% sampling 
level. For scaled diameter, the confidence intervals were 
narrow even when just 250 out of 900 nodes were sam-
pled. For all metrics, 100 nodes corresponded to mark-
edly high confidence interval width, making it a weak 
sample to obtain inference for scaled diameter. This 
analysis, more in general, provides more insight into the 
sample size required for a given level of accuracy for the 
social network metric estimate (Fig. 12).

Correlation analysis (step 4 of the protocol)
Correlation analysis on the fallow deer dataset repre-
senting the vast majority of the Phoenix Park population 
allowed us to verify whether using this analysis with a 
significantly smaller subsample of a population (e.g. those 
reported in the main manuscript) was useful or not. We 
calculated the correlation between the node-level net-
work metrics of each node in the fully observed network 
to those of the subsampled network. The network metrics 
included degree, strength, betweenness, clustering coeffi-
cient and eigenvector centrality and the level of subsam-
pling ranged from 0.5 to 90% of the observed sample.

For the network metrics degree and strength, the cor-
relation was close to 0.8 even when 0.5% of the nodes 
were sampled. Also, the betweenness and clustering coef-
ficient performed quite impressively at as low as 10% of 
the sampling level. Surprisingly, the eigenvector central-
ity had a minimum correlation value of 0.6 at the lowest 
level of sampling which was unlike the pattern we saw in 
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the analysis of five species. This could be probably due to 
the fact that the sampling protocol in this case was very 
different from those of telemetry datasets. Most of the 
node-level metrics showed a very good correlation value 
at as low as a 10% sampling level which corresponded 
to 95 deer out of 951: this analysis, therefore, confirms 
that if we had seen only a subsample (like in the subsets 
observed for the five species of the main manuscript), the 
correlation analysis would have been useful in determin-
ing the rank order of the individual nodes with respect 
to the node-level metrics. This also suggests that in the 
future, should a researcher be motivated to use these net-
work metrics to answer an ecological question about the 
fallow deer population in Phoenix Park, they can observe 
just 95–100 individuals over a period of time and still 
come to a valid conclusion about the sociality of this pop-
ulation (Fig. 13).

We performed the correlation analysis again, this time 
by sampling 500 of the total nodes (thus only half of the 
available sampled node population) and pretending that 
it was the available data to begin with. In other words, 
we aimed to verify how the correlation of the node-level 
metrics was affected if we only had half the amount of 
nodes to begin with. The results are depicted in Fig. 14.

The results indicate that the correlation values are still 
very high when the number of nodes are reduced to 500 
to begin with. The pattern in these plots for each of the 
node-level network metrics remains identical to the pre-
vious plots except for an increased variability in the cor-
relation values at lower levels of sampling. The strength 
of correlation is still good for lower levels for the network 
metrics of degree and clustering coefficients. This indi-
cates that the node-level rankings with respect to dif-
ferent network metrics are preserved when as low as 50 
individuals are observed from the population.

Fig. 11 Effect of sub‑sampling on four global network metrics. The horizontal red line in each plot represents the metric value in the observed 
network. The boxplots denote the distribution of network metric values obtained from the observed networks by taking 100 sub‑samples at each 
sampling level ranging from 0.5 to 90% of the observed network. Note that ‑ to improve plot readability ‑ the x‑axis categorically represents 
the level of sub‑sampling and the gap between each level is not true to the scale

Fig. 12 The plots show the mean widths of 95% confidence intervals obtained from bootstrapped sub‑samples of a network for the four global 
network metrics
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Bootstrapped confidence intervals for node‑level network 
metrics (step 5 of the protocol)
Based on the stepwise process described in section Step 
5. Bootstrapped confidence intervals for node-level net-
work metrics, we performed node-level bootstrapping to 
establish confidence intervals around node-level metrics 
and for the Phoenix Park Fallow deer population. Given 
that 85% of the population had been observed and was 
already a part of the network structure, we predicted 
that the network metrics would have low uncertainty. 
Figure 15 depicts the results of the analysis findings. For 
each of the node-level network measures, the plots show 
narrow bands of confidence intervals around the point 
estimates. These findings are consistent with our expec-
tations and support the validity of step 5 of the proposed 
workflow.

Appendix 4: Node‑level bootstrapping for elk, 
mule deer, pronghorn and roe deer
In this section, we present the results of node-level boot-
strapping analysis for the networks of elk, mule deer, 
pronghorn and roe deer. The plots indicating the results 
are given in Figs.  16, 17, 18 and 19. We plotted the 
observed network metric values alongside the 95% confi-
dence intervals for each node of the network. The nodes 
were sorted in decreasing order of the observed metric 
value to improve readability.

For elk and mule deer, the uncertainty in the net-
work metric degree was lowest among all the network 
metrics that we tested. As the observed degree of the 
nodes lowered, the uncertainty in the network met-
ric also decreased. For the network metric strength, a 
few nodes had a high uncertainty in the observed value 
as compared to other nodes in the network. This was 
a uniform observation across all four species and for 

Fig. 13 The plots show the correlation of node‑level network metrics of the sub‑sampled nodes and the same nodes in the observed networks. 
The black line in the plots indicates the mean correlation coefficient value and the colored region depicts the standard deviation of the correlation 
values at each sampling level

Fig. 14 The plots show the correlation of node‑level network metrics of the sub‑sampled nodes and the same nodes in the network consisting 
of 500 nodes chosen randomly from the total number of nodes (n = 951). The black line in the plots indicates the mean correlation coefficient value 
and the colored region depicts the standard deviation of the correlation values at each sampling level
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Fig. 15 From top to bottom, node‑level fallow deer network metrics (and associated 95% confidence intervals) for degree, strength, betweenness, 
clustering coefficient and eigenvector centrality, respectively. The nodes are sorted by decreasing order of observed metric to improve readability. 
The widths of confidence intervals are narrow for all nodes and metrics except for a few nodes having high betweenness values
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each of the networks, the analysis allowed us to select 
such nodes.

For the network metric betweenness, most of the nodes 
had a wider lower confidence interval as compared to upper 
interval indicating that it was likely for them to have a lower 
betweenness value than their observed point estimates if a 
different set of individuals was sampled. Very few nodes had 
wider upper confidence intervals than lower. This analysis 
allowed us to exactly point out such nodes.

For the network metric clustering coefficient, majority 
of the nodes had wider lower confidence intervals than 
the upper. Some of the nodes with an observed cluster-
ing coefficient value of 1, had zero as the lower limit of 
confidence interval, indicating a very high uncertainty in 
the observed metric. This also indicated that in the cur-
rent sample, the nodes having a value of zero as observed 
clustering coefficient, their value could have been much 
higher if some other sample was observed.

For elk and mule deer, most nodes had an observed 
eigenvector centrality of zero. The analysis helped iden-
tify nodes that might actually have much higher eigen-
vector centrality. For roe deer, only a few nodes had wide 
confidence intervals with an observed value of zero, sug-
gesting that these nodes could have significantly higher 
eigenvector centrality compared to others if a different 
sample was analyzed.

Obtaining confidence intervals for the observed val-
ues of nodes in the network revealed some of the pat-
terns that were uniform across the five species that we 
selected for this paper. For example, the network metric 
degree emerged as the most stable metric with low levels 
of uncertainty. These results compliment the results from 
the sub-sampling analysis where density emerged as the 
most stable metric among global network metrics. Also, 
the observed values for the network metrics betweenness 
and clustering coefficient could be much lower depend-
ing upon the choice of individuals in the sample. There-
fore, care should be taken while generating inferences 
based on the rankings of such network metrics.

Appendix 5: Sensitivity analysis for temporal 
threshold
We performed a sensitivity analysis on the choice of tem-
poral threshold for the roe deer network. This helped 
us identify whether this choice significantly impacts the 
resultant networks and how sensitive the network is to 
variations in the temporal threshold.

Fig. 16 From top to the bottom, node‑level elk network metrics (and associated 95% CI) for degree, strength, betweenness, clustering coefficient 
and eigenvector centrality, respectively. The nodes are sorted by decreasing order of observed metric to improve readability
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Fig. 17 From top to the bottom, node‑level mule deer network metrics (and associated 95% CI) for degree, strength, betweenness, clustering 
coefficient and eigenvector centrality, respectively. The nodes are sorted by decreasing order of observed metric to improve readability
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For the observed dataset, the network structure 
derived remains stable and robust to the chosen tempo-
ral threshold (Fig. 20). This stability is evidenced by the 
minimal deviation observed in network metric values 
as the temporal threshold value varies. This consistency 

suggests that the overall structure and characteristics of 
the network remain largely unchanged across different 
temporal resolutions, indicating robustness in the net-
work’s representation of social interactions among the 
observed individuals.

Fig. 18 From top to the bottom, node‑level pronghorn network metrics (and associated 95% CI) for degree, strength, betweenness, clustering 
coefficient and eigenvector centrality, respectively. The nodes are sorted by decreasing order of observed metric to improve readability
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Fig. 19 From top to the bottom, node‑level roe deer network metrics (and associated 95% CI) for degree, strength, betweenness, clustering 
coefficient and eigenvector centrality, respectively. The nodes are sorted by decreasing order of observed metric to improve readability
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Fig. 20 Sensitivity analysis of the network metric values with respect to different values of temporal threshold. The x‑axis in each plot represents 
the value of temporal threshold in minutes and the y‑axis corresponds to the value of global network metric for the network obtained by choosing 
a specific temporal threshold value
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