Roads Impact Tree and Shrub Productivity in Adjacent Boreal Peatlands

Organization
Resource Type
Authors
Saraswati Saraswati
Yubraj Bhusal
Andrew Trant
Maria Strack
Resource Date:
May
2020

Peatlands in the western boreal plains of Canada are important ecosystems as they store over two percent of global terrestrial carbon. However, in recent decades, many of these peatlands have been fragmented by access roads constructed for resource extraction and transportation, challenging their carbon storage potential. To investigate how roads have been impacting tree and shrub growth and productivity in these peatlands, this study was conducted in a forested bog and woody fen in Carmon Creek, Alberta, Canada. In 2017, vegetation surveys were conducted along 20 m transects that extended on both sides of the road with 4 m2 circular plots at 2, 6 and 20 m distance from the road and were followed by disc or core collection from woody stems. Within 20 m of the road at the bog site, we observed a shift towards significantly larger radial growth of trees in the downstream areas (t = 3.23, p = 0.006) where water table position was deeper, while at the fen site, radial growth of tall shrubs had little response to the road. Combining the effects of direct tree clearing and hydrology induced shifts in growth, aboveground net primary productivity (NPPag) post-road construction was reduced significantly in areas where vegetation was cleared during the road construction (i.e., upstream areas of the bog: t = 5.21, p < 0.0001 and downstream areas of the fen: t = 2.64, p = 0.07). Substantially lower NPPag around the road construction areas compared to reference areas shows tremendous loss of carbon sink potential of trees and shrubs after road construction through peatlands. Altogether, roads constructed through peatlands perpendicular to the water flow may shift long-term carbon sinks into sources of carbon, at least for the initial few years following road construction. View Full-Text